
Page | 1

A Method for Portable Business Logic:
Model-View-Presenter
Bowen, Patrick (BHGE); 2019/05/21

Usage
Use the Model-View-Presenter (MVP) approach to ensure separation of concerns, portability of

business logic, enable hot-swapping of Views and Models, enable insulation of components from

breaking changes, enable easy study of contract between view and business logic.

Best suited for programs with one or few Views.

Contents
Usage ... 1

Structure ... 2

Actors .. 2

Interfaces .. 2

Initialisation... 2

Rules and Advice ... 2

MVP Project Checklist ... 2

Example Console Project – “Doubler” .. 3

Program.cs .. 3

IModelDoubler.cs .. 3

IViewDoubler.cs .. 3

IPresenter.cs ... 3

ModelDoubler.cs ... 3

ViewDoubler.cs ... 4

PresenterDoubler.cs ... 4

Rationale ... 4

Page | 2

Structure

Actors
• A View such as the user or hardware interface

• A Presenter – a thin bridge between View/s and Model/s

• A Model containing business logic

Interfaces
• IPresenter is empty; you could instead forbid concrete Presenter public members/methods.

• IView has methods updating View, and events passing data/requests to Presenter.

• IModel has methods updating Model, and events passing data/requests to Presenter.

Initialisation
View should initialise and retain an instance of IPresenter, passing only itself as an IView through the

Presenter's constructor. (Or, consider initialising the view and presenter separately in Program.cs).

Presenter should retain the IView, and initialise and retain instance/s of IModel/s.

Rules and Advice
• Mitigate View dependency on Presenter or Model namespaces

• Forbid Presenter dependency on View namespaces

• Forbid Model dependency on View or Presenter namespaces

• Mitigate use of non-native .NET types for passing data/requests

• Forbid value-return methods in IView and IModel

MVP Project Checklist
From the description of MVP earlier in this document, we can derive the following requirements:

1. There is an IModel interface.

a. Has events for Model → Presenter interaction.

b. Has methods for Presenter → Model interaction.

2. There is an IView interface.

a. Has events for View → Presenter interaction.

b. Has methods for Presenter → View interaction.

3. There is an IPresenter interface.

a. It is empty.

4. There is at least one Model concrete class.

a. It implements IModel.

5. There is at least one View concrete class.

a. It implements IView.

b. There is an IPresenter private field.

c. Its constructor is at least public View () => _presenter = new Presenter(this);

6. There is at least one Presenter concrete class.

a. It implements IPresenter.

b. There is an IView private field.

c. There is an IModel private field.

d. Its constructor is at least public Presenter (IView view) => _view = view;

7. Rules and Advice is strictly followed.

Page | 3

Example Console Project – “Doubler”
This example project solely has business logic to double a number but could do any number of

actions and data returns. The code is marked with (x.x.) for items of the MVP Project Checklist.

Program.cs
Initialises the program. In this case, we want to initialise a View – in WinForms, it would be a Form.

static class Program
{
 static void Main (string[] args) => new ViewDoubler();
}

IModelDoubler.cs
Defines a ‘contract’ between the Model and the Presenter.

public interface IModelDoubler
{
 event Action<int> NumberDoubled;
 void DoubleNumber (int number);
}

IViewDoubler.cs
Defines a ‘contract’ between the Presenter and concrete View.

public interface IViewDoubler
{
 event Action<int> NumberForDoubling;
 void DisplayDoubledNumber (int number);
}

IPresenter.cs
Forbids the View to interact with its instance of the Presenter.

public interface IPresenter { }

ModelDoubler.cs
Implements IModel, with concrete business logic.

public class ModelDoubler : IModelDoubler
{
 public event Action<int> NumberDoubled; //Implements IModelDoubler
 public void DoubleNumber (int number)
 => NumberDoubled?.Invoke(number * 2); //Implements IModelDoubler
}

3.a.

1.

1.a.

1.b.

2.

2.a.

2.b.

4.a.

Page | 4

ViewDoubler.cs
Implements the IView, with concrete logic concerned only with this particular UI.

public class ViewDoubler : IViewDoubler
{
 public event Action<int> NumberForDoubling; //Implements IViewDoubler

 private readonly IPresenter _presenter;

 public ViewDoubler ()
 {
 _presenter = new PresenterDoubler(this);
 BeginUserPrompt();
 }

 private void BeginUserPrompt ()
 {
 Console.Write("Enter number to be doubled: ");
 var number = int.Parse(Console.ReadLine() ?? "0");
 NumberForDoubling?.Invoke(number);
 }

 public void DisplayDoubledNumber (int number) //Implements IViewDoubler
 => Console.WriteLine($"Doubled is: {number}");
}

PresenterDoubler.cs
Implements IPresenterDoubler, with concrete logic to prepare data for the View.

public class PresenterDoubler : IPresenter
{
 private readonly IViewDoubler _view;
 private readonly IModelDoubler _model;

 public PresenterDoubler (IViewDoubler view)
 {
 _view = view;
 _model = new ModelDoubler();

 _view.NumberForDoubling += _model.DoubleNumber;

 _model.NumberDoubled += _view.DisplayDoubledNumber;
 }
}

Rationale
For example, implementing a service with many commands into, and much data out of, a business

model. Imagine having to implement its View as a WinForm, Webpage, Console app, Android app

and Tcp server simultaneously. Eliminating as much business logic as possible from the UI means

more code reuse, and less rewriting.

Also imagine that the IModel/Model changes, but the Views are already very well built. The

Presenter can insulate the View from these changes.

5.a.

5.b.

5.c.

6.a.

6.b.

6.c.

6.d.

