A Method for Portable Business Logic:
Model-View-Presenter

Bowen, Patrick (BHGE); 2019/05/21

Usage

Use the Model-View-Presenter (MVP) approach to ensure separation of concerns, portability of
business logic, enable hot-swapping of Views and Models, enable insulation of components from
breaking changes, enable easy study of contract between view and business logic.

Best suited for programs with one or few Views.

Contents

Vot {0 TSP PT PP OPPUTOPPRON
T =T = Tol LT PO OSSO PO PPTRPPTOTRO PSR
INIEIRISATION. ettt st ettt st s b e ha e st et s bte e s be e e ate e s ateesneeesareean
RUIES @NA AQVICEeeeie ettt ettt et e ettt et e st e e s ab e e sabeessabeesabeeesabeesabeesnteesabaeenanes
YAV o o =T or a1 o T=Tol [y A UUPPNE
Example Console Project — “DOUDBIEI" ...ttt ectte e e et e e e e ette e e e e sate e e e earaeaeenraeaeennes
[o< = 1 0 T oL T PP PO OPPPPTPPPPOT
IMOAEIDOUDIEI.CS. ..ottt e st st r e b e s meesme e sae e eme e e s
IVIEWDOUDIEI.CS ..ttt et ettt s b e e bt e bt e s m e sme e smeeemreeneees
[PFESENTEI.CS wuiiiiiiiiiiiiiii e
MOAEIDOUDIEI.CS ...ttt ettt et e bt e s bt e s ae e sab e s bt e bt e ebeesbeesmeesaeeeneeeneean
VIBWDOUDIEI.CS ..ttt h e sttt et et e bt e s b e s bt e sateeateenbeenbeesbeesaeesanenas
PresenterDOUDIEI.CSoouiiiiiieeee ettt sttt r e s e es

Y dToY 0 F=1 (IR

Page | 1

Structure

Actors
e AView such as the user or hardware interface
e APresenter —a thin bridge between View/s and Model/s
e A Model containing business logic

Interfaces
e |Presenter is empty; you could instead forbid concrete Presenter public members/methods.
e |View has methods updating View, and events passing data/requests to Presenter.
e |Model has methods updating Model, and events passing data/requests to Presenter.

Initialisation
View should initialise and retain an instance of |[Presenter, passing only itself as an [View through the
Presenter's constructor. (Or, consider initialising the view and presenter separately in Program.cs).

Presenter should retain the IView, and initialise and retain instance/s of IModel/s.

Rules and Advice

e Mitigate View dependency on Presenter or Model namespaces
e Forbid Presenter dependency on View namespaces

e Forbid Model dependency on View or Presenter namespaces

e Mitigate use of non-native .NET types for passing data/requests
e Forbid value-return methods in [View and IModel

MVP Project Checklist

From the description of MVP earlier in this document, we can derive the following requirements:

1. Thereis an IModel interface.
a. Has events for Model - Presenter interaction.
b. Has methods for Presenter - Model interaction.
2. Thereis an |View interface.
a. Has events for View - Presenter interaction.
b. Has methods for Presenter - View interaction.
3. Thereis an |Presenter interface.
a. lItis empty.
4. There is at least one Model concrete class.
a. Itimplements IModel.
5. There is at least one View concrete class.
a. Itimplements [View.
b. There is an |Presenter private field.
c. Its constructor is at least public View => _presenter = new Presenter(this);
6. There is at least one Presenter concrete class.
a. Itimplements |Presenter.
b. Thereis an |View private field.
c. Thereis an IModel private field.
d. Its constructor is at least public Presenter (IView view) => view = view;
7. Rules and Advice is strictly followed.

Page | 2

Example Console Project — “Doubler”

This example project solely has business logic to double a number but could do any number of
actions and data returns. The code is marked with for items of the MVP Project Checklist.

Program.cs
Initialises the program. In this case, we want to initialise a View — in WinForms, it would be a Form.

static class Program

{
}

static void Main (string[] args) => new ViewDoubler();

IModelDoubler.cs
Defines a ‘contract’ between the Model and the Presenter.

public interface IModelDoubler
{

event Action<int> NumberDoubled;
void DoubleNumber (int number);

}

[ViewDoubler.cs
Defines a ‘contract’ between the Presenter and concrete View.

public interface IViewDoubler
{

event Action<int> NumberForDoubling;
void DisplayDoubledNumber (int number);

[Presenter.cs
Forbids the View to interact with its instance of the Presenter.

public interface IPresenter { }

ModelDoubler.cs
Implements IModel, with concrete business logic.

public class ModelDoubler : IModelDoubler m

{
public event Action<int> NumberDoubled; //Implements IModelDoubler
public void DoubleNumber (int number
=> NumberDoubled?.Invoke(number * 2); //Implements IModelDoubler
}

Page | 3

ViewDoubler.cs
Implements the IView, with concrete logic concerned only with this particular UL.

public class ViewDoubler : IViewDoubler
{

public event Action<int> NumberForDoubling; //Implements IViewDoubler
private readonly IPresenter _presenter;
public ViewDoubler
_presenter = new PresenterDoubler(this);
BeginUserPrompt();
private void BeginUserPrompt
Console.Write("Enter number to be doubled: ");

var number = int.Parse(Console.ReadlLine ?? "0");
NumberForDoubling?.Invoke (number);

public void DisplayDoubledNumber (int number) //Implements IViewDoubler
=> Console.WriteLine($"Doubled is: {number}");

PresenterDoubler.cs
Implements IPresenterDoubler, with concrete logic to prepare data for the View.

public class PresenterDoubler : IPresenter m
{

private readonly IViewDoubler _view;
private readonly IModelDoubler _model;

public PresenterDoubler (IViewDoubler view

_view = view; m
_model = new ModelDoubler();

_view.NumberForDoubling += _model.DoubleNumber;

_model.NumberDoubled += _view.DisplayDoubledNumber;

Rationale

For example, implementing a service with many commands into, and much data out of, a business
model. Imagine having to implement its View as a WinForm, Webpage, Console app, Android app
and Tcp server simultaneously. Eliminating as much business logic as possible from the Ul means
more code reuse, and less rewriting.

Also imagine that the IModel/Model changes, but the Views are already very well built. The
Presenter can insulate the View from these changes.

Page | 4

